MA372: Differential Equations

Baker University — Fall 2023

Each of the following comes from the textbook *Elementary Differential Equations and Boundary Value Problems* (Ninth Edition) by William E. Boyce and Richard C. DiPrima.

Exam 1: First Order Differential Equations

date	day	section	$\operatorname{topic}(s)$
			\circ direction fields
8/23	W	§1.1: Mathematical Models; Direction Fields	\circ equilibrium solutions
			\circ basic examples
			• basic examples
8/25	F	§1.2: Solutions of Some Differential Equations	\circ initial value problems
			\circ integral curves

date	day	section	$\operatorname{topic}(s)$
			\circ ODEs versus PDEs
8/28	M	§1.3: Classification of Differential Equations	\circ order
0/20		g1.5. Classification of Differential Equations	\circ linearity
			\circ basic examples
		§2.1: Linear Equations; Integrating Factors	\circ first order linear equations
8/30	W		\circ integrating factors
			\circ initial value problems
			• Chain Rule for Derivatives
9/1	F	§2.2: Separable Equations	\circ initial value problems
			\circ integral curves

date	day	section	$\operatorname{topic}(s)$
9/4	М	Labor Day	
9/6	W	§2.6: Exact Equations	 potential functions solutions of exact equations
9/8	F	§2.4: Linear vs. Non-Linear Equations§2.8: Existence and Uniqueness Theorem	 integrating factors existence and uniqueness Picard's Method basic examples

date	day	section	$\operatorname{topic}(s)$
9/11	M	Exam I Review	
9/13	W	Exam I Review	
9/15	F	Exam I	

Exam 2: Second Order Linear Equations

date	day	section	topic(s)
			\circ homogeneity
0/19	M	\$2.1. Homogeneous Equations	\circ linearity
9/18	IVI	§3.1: Homogeneous Equations	\circ characteristic equation
			\circ initial value problems
			\circ existence and uniqueness
9/20	W	§3.2: Linear Homogeneous Equations	\circ superposition
			\circ computing the Wronskian
			\circ fundamental set of solutions
9/22	F	§3.2: Linear Homogeneous Equations	• Abel's Theorem
			• basic examples

date	day	section	$\operatorname{topic}(\mathrm{s})$
			\circ discriminant
9/25	М	§3.3: Complex Roots of Characteristic Eq'n	◦ Euler's Formula
			\circ initial value problems
9/27	117	V §3.4: Repeated Roots; Reduction of Order	• D'Alembert's Method
9/21	W		\circ reduction of order
0/20	F	§3.5: Method of Undetermined Coefficients	\circ the fundamental theorem
9/29	F		\circ basic examples

date	day	section	$\operatorname{topic}(s)$
10/2	М	§3.6: Variation of Parameters	\circ motivation
10/2	101		\circ basic examples
10/4	W	\$2.6. Variation of Darameters	\circ the fundamental theorem
10/4	vv	§3.6: Variation of Parameters	\circ further examples
		F §5.1: Review of Power Series	\circ radius of convergence
10/6	F		\circ interval of convergence
10/6	Г		\circ common examples of power series
			\circ change of index

date	day	section	topic(s)
			\circ ordinary point
10/9	М	§5.2: Series Solutions, Part I	\circ singular point
			\circ recurrence relations
			\circ analytic functions
10/11	W	§5.3: Series Solutions, Part II	\circ the fundamental theorem
			\circ further examples
10/13	F	Fall Break	

date	day	section	topic(s)
			\circ real distinct roots
10/16	М	§5.4: Euler Equations	\circ real repeated roots
			\circ complex roots
10/18	W	Exam II Review	
10/20	F	Exam II Review	

date	day	section	topic(s)
10/23	М	Exam II	

Exam 3: Other Solutions of Ordinary Differential Equations

date	day	section	$\operatorname{topic}(s)$
			\circ improper integration
10/25	117	§6.1: Definition of the Laplace Transform	\circ Comparison Theorem
10/25	W		\circ integral transforms
			\circ basic examples
10/97	F	S6 1. Definition of the Lopless Transform	\circ inverse Laplace transforms
10/27	Г	§6.1: Definition of the Laplace Transform	\circ further examples

date	day	section	$\operatorname{topic}(s)$
10/30	М	§6.2: Solutions of Initial Value Problems	\circ further examples
10/30	101		\circ initial value problems
			• Heaviside function
11/1	W	§6.3: Step Functions	\circ computing step functions
			\circ inverse Laplace transforms
11/9	F	F §6.3: Step Functions	\circ further examples
11/3	Г		\circ initial value problems

date	day	section	$\operatorname{topic}(s)$
11/6	М	§6.5: Impulse Functions	\circ Dirac delta function
11/0	go.5: Impulse Functions		\circ basic examples
	W		• properties
11/8		§6.6: The Convolution Integral	\circ inverse Laplace transforms
			\circ initial value problems
	F		• Euler Method
			• Backward Euler Formula
			\circ basic examples
11/10		§8.1: The Euler or Tangent Line Method	\circ order of convergence
			\circ global truncation error
			\circ local truncation error
			\circ round-off error

date	day	section	$\operatorname{topic}(s)$
11/13	М	§8.2: The Runge-Kutta Method	 basic examples order of convergence local truncation error
11/15	W	Exam III Review	
11/17	F	Exam III Review	

date	day	section	topic(s)
11/20	М	Exam III	
11/22	W	Thanksgiving Break	
11/24	F	Thanksgiving Break	

Final Exam Review

date	day	section	topic(s)
11/27	М	Final Exam Review	
11/29	W	Final Exam Review	
12/1	F	Final Exam Review	

date	day	section	$\operatorname{topic}(s)$
12/4	М	Final Exam Review	
12/6	W	Final Exam Review	
12/8	F	Final Exam Review	

Final Exam: Tuesday, December 12 from 1:00 to 4:00 PM in Mulvane 202